
Regulation of developmental transitions
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Plants undergo a series of profound developmental changes

throughout their lifetimes in response to both external

environmental factors and internal intrinsic ones. When

these changes are abrupt and dramatic, the process is referred

to as phase change. Recently, several genes have been

discovered that play a role in these developmental transitions.

Their sequence and expression patterns shed new light

on the mechanisms of phase change, and provide a link

between the external and internal factors that control them.

Examples of these transitions include changes from juvenile to

adult leaf formation, vegetative to inflorescence meristem

development, and inflorescence to floral meristem initiation.
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Introduction
Plant form changes over time in response to a variety of

different factors. Such changes can be subtle and occur

gradually or can be dramatic and occur suddenly. The

latter situation is commonly referred to as phase change,

and several groups have taken advantage of two model

plant systems, maize and Arabidopsis, to study the genet-

ics and molecular biology of this process. One central

question regarding phase change is where the locus of
ncedirect.com
change initiates within the plant. Because plant form is

dependent on the activity of meristems, it is believed that

phase change must involve a meristem-dependent com-

ponent. Then again, developmental transitions are intri-

cately tied to environmental factors that might influence

the meristem indirectly. Several newly identified genes

that are involved in these pathways reveal how the

balance of meristem and non-meristem factors brings

about the remarkable morphological transitions that char-

acterize phase change.

Juvenile-to-adult transition in leaves
Several groups have described the histological and mor-

phological differences between juvenile and adult leaves

in Arabidopsis [1]. For example, early leaves are smaller

and more rounded than leaves formed later in develop-

ment. In addition, adult leaves have serrations and abaxial

trichomes, whereas juvenile leaves do not. These phe-

notypic differences have been the basis for several

genetic screens [2,3]. Similar mutant screens have also

successfully identified phase-specific genes in monocots

such as maize. For example, the glossy15 gene of maize

represses adult cell characteristics in the juvenile leaves

of maize where the gene is expressed [4]. Interestingly,

the genes thought to function in juvenile-to-adult leaf

transitions in Arabidopsis, for example, the SQUINT gene

that encodes a cyclophilin 40 chaperone protein, are

broadly expressed in both the juvenile and the adult

phases [5]. This fact might underline the differences in

leaf differentiation between maize and Arabidopsis, or

indicate that additional levels of regulation control this

process in dicots.

The hasty mutant was identified in a screen for Arabidopsis
mutants that cause the precocious production of abaxial

trichomes on early leaves [2]. HASTY was cloned and

shown to encode a widely expressed ortholog of the

exportin 5 gene of yeast [6�]. Exportin proteins export a

variety of proteins, including both phosphorylated forms

of several transcription factors [7] and double-stranded

RNA-binding proteins [8]. Given that expression of the

HASTY gene is not specific to the juvenile or the adult

phases of development, a possible mode of function for

HASTY in phase change might be indirect (i.e. the cargo

that HASTY transports, rather than HASTY itself, could

be involved in phase change). Recently, it was demon-

strated that microRNA (miRNA) precursors are effi-

ciently transported by Exportin 5 to the cytoplasm,

where they are processed to 22-nucleotide miRNAs [9].

In Arabidopsis, such miRNAs might function in lateral

organ polarity; for example, miRNA165/166 represses the

PHABULOSA (PHAB) gene [10] that promotes adaxial
Current Opinion in Plant Biology 2005, 8:67–70
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leaf identity. Consequently, it is possible that organ

polarity genes are derepressed in hasty mutants because

of faulty miRNA transport, leading to adaxialization of

the leaf. Support for this hypothesis comes from the study

of new alleles of the miRNA biogenesis mutant argo-
naute1 (ago1). These ago1 mutants have abaxial trichomes

on early leaves as a result of ectopic expression of the

PHAB transcript [11]. Thus, the change from juvenile to

adult leaf characteristics is perhaps controlled by the

spatial and temporal regulation of leaf polarity factors.

Another Arabidopsis phase-change mutant is zippy, which

not only has adult leaf traits on leaves one and two but also

shows pleiotropic defects in flower and carpel develop-

ment. Double-mutant analysis places ZIPPY in the same

pathway as HASTY, but in a parallel pathway to SQUINT.

ZIPPY encodes a widely expressed member of the AGO
gene family and, similar to SQUINT and HASTY, shows

no juvenile phase-specific expression [12�]. In light of the

facts that AGO genes function in a variety of miRNA

processes and that HASTY might transport miRNAs, it is

tempting to speculate that ZIPPY might also be involved in

miRNA biogenesis. As in the case of SQUINT and HASTY,

it seems likely that the genes controlled by ZIPPY, rather

than ZIPPY itself, are the targets of phase change.

Vegetative-to-reproductive transition
The most dramatic example of A developmental transi-

tion in plants is the change from vegetative to reproduc-

tive development. The environmental factors that

regulate flowering converge at the shoot apical meristem

(SAM), and this convergence ultimately brings about the

floral transition. Many single mutants have been

described that alter the timing of flowering, but all of

these mutants flower eventually. Recently, two new

players in this transition were found, namely called

PENNYWISE (PNY) and POUNDFOOLISH (PNF).

KNOTTED1-LIKE HOMEOBOX (KNOX) genes are

known to function within the meristem to maintain

indeterminate cell identities [13,14]. KNOX proteins

interact biochemically with other homeodomain proteins

belonging to the BEL1-like (BELL) class [15–17]. When

two members of the BELL family, PNY and PNF, were

knocked out, a novel non-flowering mutant phenotype

was revealed [18�]. The pny pnf double mutant expresses

floral transition markers such as SUPPRESSOR of OVER-
EXPRESSION OF CONSTANS (SOC1) and FRUITFUL,

indicating that floral inductive signals are received by the

SAM and yet flowers are never made, even months after

germination [18�]. The SAM of the pny pnf double mutant

shows several defects in morphology, demonstrating that

these BELL genes are necessary for the completion of the

morphological changes in the SAM that allow it to

respond to floral signals.

Recent work has led to a better understanding of how

environmental factors such as photoperiod, which is per-
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ceived in the leaf, and cold temperature, which is per-

ceived at the meristem, regulate flowering time [19,20].

CONSTANS (CO) is a key player in the regulation of

flowering by photoperiod; wildtype Arabidopsis plants

flower sooner in long days than in short days, whereas

co mutants flower late in both short and long days [21].

Daylength is perceived in the leaves [22], yet how that

signal moves to the meristem is a mystery. George

Coupland’s group [23��] recently showed that CO func-

tions non-autonomously and that its expression in the

phloem, but not in the meristem, is sufficient to directly

activate the target gene, FLORAL TIMING (FT). These

findings place CO in a good position to regulate a systemic

flowering signal.

CO mRNA levels are regulated by the circadian clock,

peaking in the evening. In long days, the peak is biphasic,

with one peak occurring while there is still daylight [24].

This peak of CO expression requires the photoreceptor

FKF1, an F-box flavin-binding protein [25�] that is prob-

ably a blue-light receptor. In addition, CO protein stabi-

lity is antagonistically regulated by photoreceptors, being

stabilized by blue and far-red light and destabilized in the

dark and in red light [26�]. Thus, the coincidence of

circadian-controlled mRNA peaks and protein stability

ensures high levels of CO that activate the transcription of

floral pathway integrators.

In Arabidopsis, cold regulates flowering through the floral

repressor, FLOWERING LOCUS C (FLC; for review see

[19]). Plants that have dominant alleles of FLC, a

MADS-box gene, do not flower unless they have under-

gone a long and sustained cold period, known as a

vernalization period. FLC RNA levels decrease during

this cold period and permit flowering by no longer

repressing genes such as SOC and FT. Recent analysis

of VERNALIZATION INSENSITIVE3 (VIN3) shows that

this gene is a key player in the vernalization process. It

encodes a PHD-finger protein whose expression is

induced by a long cold period. As VIN3 RNA levels

increase, FLC levels decrease, allowing flowering. VIN3
is expressed specifically in the meristem in the same

pattern as FLC, and the VIN3 protein interacts directly

with the FLC locus and represses its expression [27�].
VRN2 and VRN1, are also present in this pathway and

are required to maintain the inactive state of FLC by

histone methylation [28]. FLC is also negatively regu-

lated by other genes, including FVE, which is a retino-

blastoma-associated protein [29,30].

One of the few genes known to be responsible for the

floral transition in maize is indeterminate1 (id1) [31]. This

gene encodes a unique zinc-finger protein that binds to an

11-base-pair, T-rich consensus sequence [32]. Like other

late-flowering mutants, id1 mutants produce many more

leaves than the wildtype. When an inflorescence is finally

made, however, vegetative seedlings are produced
www.sciencedirect.com
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amongst the floral structures, demonstrating that id1 is

necessary not only for initiating the floral transition but

also for maintaining it. Surprisingly, id1 expression was

not observed within the SAM but within the young leaves

surrounding it, indicating that ID1 functions non-cell

autonomously with respect to the SAM [31]. id1 and

CO are clear examples of phase change genes that act

at a distance from the meristem to transduce environ-

mental signals to cause a developmental transition.

A similar mutant, called plastochron1 (pla1), has been

described in rice [33]. pla1 was identified on the basis

of its rapid initiation of vegetative leaves, although its

time to flowering is unaffected. Like those of id1, pla1
mutant panicle primordia display reversion to vegetative

shoots. Hence, in addition to controlling the rate of leaf

initiation, the PLA1 gene also functions to repress vege-

tative development within the reproductive phase. The

PLA1 gene encodes a member of the cytochrome P450

gene family [34��]. Like id1, PLA1 is not expressed within

the meristem, and instead is found at the abaxial side of

leaf primordia and bract leaves, and within the stem. It

will be interesting to determine how the unique expres-

sion pattern of PLA1 is able to coordinate the timing of

leaf initiation within the SAM.

Inflorescence-to-floral transitions
In Arabidopsis, several well-described genes, such as

LEAFY, are necessary for the inflorescence meristem

to switch to the production of floral meristems [35]. In

maize, the LEAFY gene is duplicated, and when both

copies are mutated, defects in floral organ identity and

determinacy are seen [36�] that are similar to those seen in

dicots. These results suggest that the LEAFY genes have

maintained a conserved role in floral development in

monocots and dicots.

The branched silkless1 (bd1) mutant of maize is also

required for the transition from the inflorescence meri-

stem to the floral meristem [37]. In the female inflores-

cence of bd1 mutants, the spikelet meristem that normally

initiates a pair of floral meristems becomes highly

branched and behaves more like a branch meristem from

the tassel. The bd1 gene product belongs to the ERF class

of transcription factors, and is expressed at the base of the

spikelet meristem in the axil of the glume [38]. Surpris-

ingly, bd1 is not expressed within the spikelet meristem,

although the identity of the meristem is altered in the

mutant. The frizzy panicle (fzp) mutant of rice is pheno-

typically similar to bd1 mutants, and also displays a

conversion of spikelet meristem to indeterminate branch

[39]. The fzp gene is the rice ortholog of bd1 [40] and has

an expression pattern that is similar to that of bd1.

Expression of fzp/bd1 in the axil of the glume may be

required to repress the formation of axillary meristems,

which are derepressed in the bd1 and fzp mutants and take

on branch-like qualities.
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Conclusions
Plants successfully integrate several environmental sig-

nals to undergo developmental transitions. Although

these transitions must involve the activity of the meri-

stem at some point, the causative signals are most likely to

come from outside the meristem. The fact that several

genes that are necessary for these transitions, such as CO,
id1, PLA1 and bd1, are not expressed within the meri-

stems that they control, provides some evidence for this

hypothesis. The next challenge is to discover which

external factors activate these genes, and how subsequent

signaling to the meristem occurs to effect phase change.
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